CAPLS

How to Write Code that Will Survive the

Many-Core Revolution

Write Once, Deploy Many(-Cores)

| -
Q
(o]0]
©
c
©
=
7))
o
©
(V)]
<
L
>
Ll
—
<<
o
<
o
()]
&
>
O
S
O

Ooaa//
- aC\\u

CAPS worldwide ecosystem cars

Customers
—I \"

~ e e r
Aﬁﬁ BNP PARIBAS =2 “#GENCI EADS DENSO Q 5 Statoil

o Py ‘ 9 ToTAaL
)/ § ”1.,% ﬂ-’.;,
E V@L § é HLR|[s® L3 RIEXKZE (LQ'TlEQ: II.F

TOHOKU UNIVERSITY

— HUAWEI
= |

RIDGE

Business Partners
\opr absaft A!ﬂ&ﬂ (intel)’ | 233—-‘2
= | | NEC :
cuLa > €INVIDIA. ARM Bulk SgI
* Involved in many European Research projects o
OpenMP ARB Accelerator program subcommittee OpenMP
« OpenStandard Initiative 'ﬂ%mpp Qoenace.
hr:Ep

- HMPP._Competences Centers’in-Edrope-and ASia«® ..

December 2011 wWww.caps-entreprise.:com

Foreword CAPS

* “"How to write code that will survive the
many-core revolution?” is being setup as a collective
initiative of HMPP Competence Centers

o Gather competences from universities across the world (Asia,
Europe, USA) and R&D projects: H4H, Autotune, TeraFlux

o Visit http://competencecenter.hmpp.org for more information

&:IRISA hmpp [APOS-EU
i

Compeltence ProHMPT

P Céenter et /
i B b

ARCHITECTURE GROUP ‘ ' : H P :
UNIVERSITY OF HOUSTON RSy SR CarD TECHNOLOGY

GAC.UDC.ES

December 2011 WWWw.caps-entreprise.com 3

V|
CAPLS

Trend from Top500: Cores per Socket

500
450
L
400 16
12
350
M 10
w 300
: =
t’>’. 250 s
“ 200 MG
150 4
100 =)
50

0
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

December 2011

4

Trend from Top500: Accelerators cAars

40
35
30
M Clearspeed CSX60022
. 25 W ATI GPU
% 20 M [BM PowerXCell 8i
& . 1 NVIDIA 2070
M NVIDIA 2050
10 M NVIDIA 2090
5
0

2006 2007 2008 2009 2010 2011

December 2011

5

IDC @SC11: Study Results cars

« Many HPC codes aren’t seeing a speed up with new
hardware systems (due to many-core, lower bandwidth,
lower memory/core, etc.)

o Many applications will need a major redesign
o Multi-core will cause many issues to “hit-the-wall”
o S0 GPUs can offer a speed-up

« BUT

o GPU still need to be more easy to program
o Future portability is a key concern

December 2011 WWww.caps-entreprise.com 6

SC11: Consensus about directives ? cAars

* OpenACC initiative (2011) OpenACC.
@) CAPS, Cray, NV|D|A, PGl DIRECTIVES FOR ACCELERATORS
o Afirst common syntax for accelerator regions
o Visit http://www.openacc-standard.com for more information

* OpenHMPRP initiative (2010) "g [eﬁjpp

o Directive Open Standard for many-core programming

o Complient with OpenACC syntax

o Topics not covered by OpenACC: data-flow extension, tracing
interface, auto-tuning APIs...

o Visit http://www.openhmpp.org for more information

December 2011 www.caps-entreprise.com 7

Where Are We Going? cAars

< 10000
35 |
3 1000
25
]
=
A)
€ » >
g . 100 =
In 2013-2014 the number of parallel cores o
in general-purpose processors will be similar §
15 1 to the one contained in NVIDIA GPUs in 2007 o
1 10
T T T T l. T T T 1

6 QA ® O W
S AT R S M
DD P

Clock Frequency e=fij=CPU eaf=GPU

December 2011 WWww.caps-entreprise.com 8

What to Expect From the Architecture? caPs

Data transfer between
CPU and GPUs, multiple LA Data/stream/vector
address spaces R | parallelism to be
i . PR exploited by GPUs
E.g. CUDA/ OpenCL

Strong Non Uniform Memory
Access (NUMA) effects

o Not all memories may be
coherent

o Multiple address spaces

Node is not an homogeneous
piece of hardware

* Not only one device
e Balance between small and fat
cores changes over time

Many parallelism forms are needed to

deal with
* Increasing number of processing units
* Some form of vector computing (AVX or

SSE instructions)

December 2011 www.caps-entreprise.com 9

What to consider by writing your code caps

« Computing power comes from parallelism
o Hardware (frequency increase) to software (parallel codes) shift

o Driven by energy consumption
» Heterogeneity is the source of efficiency
» Few large fast OO cores combined with many smaller cores (e.g. APUs)

* Fast moving hardware targets environment
o e.g. fast GPU improvements (RT and HW), new massively parallel CPU
o Write codes that will last many architecture generations

« Keeping a unique version of the codes, preferably mono-
language, Is a necessity
o Reduce maintenance cost
o Directive-based approaches suitable
o Preserve code assets

December 2011 www.caps-entreprise.com 10

Software Main Driving Forces CAPS

 ALF - Amdahl’s Law is Forever
o A high percentage of the execution time has to be parallel

o Many algorithms/methods/techniques will have to be reviewed to
scale

serial execution parallel section

time

<> <>
reduced execution time

« Data locality is expected to be the main issue
o Moving data will always suffer latency

December 2011 www.caps-entreprise.com 11

One MPI Process per Core Approach caps

« Benefit
o No need to change existing code

e |ssues

o Extra latency compared to shared memory use

« MPI implies some copying required by its semantics (even if efficient MPI
implementations tend to reduce them)

o Excessive memory utilization
 Partitioning for separate address spaces requires replication of parts of the data.

« When using domain decomposition, the sub-grid size may be so small that most points
are replicated (i.e. ghost zone)

» Memory replication implies more stress on the memory bandwidth which finally produces
a weak scaling

o Cache trashing between MPI processes

o Heterogeneity management
» How are MPI processes linked to accelerator resources?
» How to deal with different core speed?

» The balance may be hard to find between the optimal MPI process that makes good use
8f f’;he CPUt core and the use of the accelerators that may be more efficiently used with a
ifferent ratio

December 2011 www.caps-entreprise.com 12

Thread Based Parallelism Approach caprs

* Benefits
o Some codes are already ported to OpenMP/threads APls
o Known APlIs

e |ssues

o Data locality and affinity management

» Data locality and load balancing (main target of thread APIs) are in general
two antagonistic objectives

» Usual thread APIs make it difficult / not direct to express data locality affinity

o Reaching a tradeoff between vector parallelism (e.g. using the AVX
instruction set), thread parallelism and MPI parallelism

» Vector parallelism is expected to impact more and more on the performance

» Current threads APIs have not been designed to simplify the implementation
of such tradeoff

o Threads granularity has to be tuned depending on core characteristics
(e.g. SMT, heterogeneity)

« Thread code writing style does not make it easy to tune

December 2011 www.caps-entreprise.com 13

An Approach for Portable Many-Core Codes cAa~s

N
e Try to expose node massive data parallelism in a target independent way

Do not hide parallelism by awkward coding

e Keep code debug-able

e Track performance issues

Exploit libraries

When allowed, do not target 100% of possible performance, the last 20% p
are usually very intrusive in the code

J

€E€C€CCECL

December 2011 www.caps-entreprise.com 14

1 - Express Parallelism, not Implementation <cAars

* Rely on code generation for implementation details
o Usually not easy to go from a low level API to another low level one
o Tuning has to be possible from the high level

o But avoid relying on compiler advanced techniques for parallelism
discovery, ...

o You may have to change the algorithm!
* An example with HMPP

A #pragma hmppcg gridify(j,i)
#pragma hmppcg unroll(4), jam(2)
for(4 031 <p i Ity
= for(1i =0 ; i <m; i++) {
for (k= ...) { ...}
' }

Vector ISA :

Y

December 2011 www.caps-entreprise.com 15

HMPP Hybrid Compiler

Directive based approach for
many-core

CUda & OpenCL deVICeS ﬁszaugn“;?:.h'ﬂ?l;lzﬂ codelet

for ()

and soon Intel MIC

e Features

o With one source code,
target multiple many-core

main () {

#pragma hmpp f1 callsite
myfunc (V1[k] ,V2[k]) ;

}

HMPP Compiler

architectures

o Distribute computation over CPU
& GPU cores (Multi-GPU)

o High many-core performance
with optimized data
management

o Libraries interoperability with
user code

o Protect your software investment
by using an Open Standard

December 2011

(

\.

Rapidly develop Many-core

Execute
on GPU (RPC)

\

Accelerated applications
J

www.caps-entreprise.com 16

Rich set of directives for performance caps

* Manycore programming directives in legacy code
o Declare and generate GPU versions of computations (codelets)
o Optimize data movement
o Distribute computations over CPU cores & GPUs

e Tuning of GPU kernels
o Advanced code optimizations
o Control mapping of computations
o Fully exploit GPU stream architecture

Performance does matter

Y|
CAPLS

En average, HMPP reaches Cuda performance +/- 10%

SGEMM

4096x4096 Single Precision elements
Running on NVIDIA Tesla C2050
MKL: 2 x Intel® Xeon® X5560
April 2011

700

600

500

400

Gflopis

300

200

100

MKL HMPP CUBLAS MAGMA

Gflop/s

DGEMM

4096x4096 Double Precision elements
Running on NVIDIA Tesla C2050
MKL: 2 x Intel® Xeon® X5560
April 2011

350

300
250
200
150
100

50

MKL HMPP CUBLAS MAGMA

2 x Intel(R) Xeon(R) X5560 @ 2.80GHz (8 cores) - MKL |

NVidia Tesla C2050, ECC activated — HMPP, CUBLAS, MAGMA

|
)

October 2011

18

Performances (max)

eSd NO TRANSFERTS
e a o / T in S
 Scalar 18457.52 3030.9 4668.67 7531.1 1054.4 15.68 1933.82
_) OMP=8 5040.1 379.09 1479.91 1302.64 1248.35 6.76 348.32
HMPP 820.34 56.88 388.23 156.61 81.58 2.04 29.7
\- CUDA 1267.66 75.01 458.95 135.61 66.99 66.51 ﬁ;% i
- ALL NOISE DIFFUS KERSBS SHIFT BOUND FLUX
OMP / SEQ 3.66 8.00 3.15 5.78 0.84 2.32 5.55
L HMPP / SEQ 22.50 53.29 12.03 48.09 12.92 7.69 65.11
CUDA/SEQ 14.56 40.41 10.17 55.53 15.74 0.24 3.64
\k
Speedu
peedup Geom: 128 x 128 x 256
Diffus = FFT FW + diffrac + FFTBW ';‘°M'{Ifl’
KERSBS = KER + SBS
GCdV CEA, DAM, DIF, F-91297 Arpajon 2
Guillaume Colin de Verdiére, Onera XtremCFD Workshop, 7t" of October, 2011
19

December 2011

www.caps-entreprise.com

2 — Do not hide parallelism caprs

* Do not hide parallelism by awkward coding
o Data structure aliasing, ...
o Deep routine calling sequences
o Separate concerns (functionality coding versus performance coding)

« Data parallelism when possible
o Simple form of parallelism, easy to manage
o Favor data locality
o But sometimes too static

« Kernels level
o Expose massive parallelism
o Ensure that data affinity can be controlled
o Make sure it is easy to tune the ratio vector / thread parallelism

December 2011 www.caps-entreprise.com 20

Data Structure Management cars

Data locality
o Makes it easy to move from one address space to another one
o Makes it easy to keep coherent

* Do not waste memory
o Memory per core ratio not improving

* Choose simple data structures
o Enable vector/SIMD computing
o Use library friendly data structures
o May come in multiple forms, e.g. sparse matrix representation

« For instance consider “data collections” to deal with multiple
address spaces or multiple devices orparts of a_device

o Gives a level a adaptation for dealing with heterogeneity
o Load distribution over the different devices is simple to express

December 2011 www.caps-entreprise.com 21

HMPP 3.0 Map Operation on Data Collection cars

#pragma hmpp <mgrp> parallel
for (k=0;k<n;k++) {
#pragma hmpp <mgrp> f1l callsite
myparallelfunc (d[k] ,n);

¥ ¥ ¥ ¥ ¥
CPU O CPU 1 GPU O GPU 1 GPU 2

o
ub LU 1

Main memory Device Device Device
memory memory memory

d0o di1 d2 d3 dl d2 d3

December 2011 www.caps-entreprise.com 22

3 - Debugging Issues caprs

* Avoid assuming you won'’t have to debug!

« Keep serial semantic

o For instance, implies keeping serial libraries in the application code
o Directives based programming makes this easy

* Ensure validation is possible even with rounding errors
o Reductions, ...
o Aggressive compiler optimizations

« Use defensive coding practices
o Events logging, parameterize parallelism, add synchronization points,

o Use debuggers (e.g. Allinea DDT)

December 2011 www.caps-entreprise.com 23

Allinea DDT - Debugging Tool for CPU/GPU cars

« Debug your kernels:

o Debug CPU and GPU concurrently

Examine thread data
o Display variables

Integrated with HMPP

o Allows HMPP directives
breakpoints

o Step into HMPP codelets

December 2011

Session Control Search View Help

Jolu Bas KB HE] ia-

L)
> v

a”inea ddt

the distributed debugging tool

ﬂFo(us on current (& Process

|

00000000 TTO

CUDA Threads (hmpp_codelet__sgemm__loop2D_1)

sl«kl 0 3] 3 Thread | o 3: 0 E 3 IGnd size: 32x256 Block size: 32xdx1

Project Al & X F sgemm.f90 (3 | “ mysgemm_cuda hmc.cu I H cupaintrinsics.h | Locals | cu'|»
(8 COWTRINS _A_] Locals & X
= Project Fles 42 1shapp mySgenn codelet, target=CUDA, args[mout].io=inout, args(ml:n2:mout:n;alpha:beta).const=tru Variable 1| Value
®s T 43 SUBROUTINE sqenn(n,nl,n2,alpha, beta, mout) alph 0x2
i bl 14 INPLICIT NONE 2
-4 Header Fles a5 INTEGER, INTENT (IN) beta 0x2
i & N cuDAIntrinsics h | REAL(4), DIHENSION(n,n), INTENT(IN) b 103
e REAL(4), DIMENSION(n,n), INTENT(IN) 77
Maurcelfies REAL (4) , INTENT(IN) i2 0
+ B mysgemm_cuda.hme.cu REAL(4), INTENT(IN) i2 0
B0 sgemmiso | REAL(4), DIMENSION(n,n), INTENT(INOUT) :: mout e o
INTEGER 1,7,k ml 0x2
REAL(4) prod m2 ox2
tshappcg gridify (1,j) mout 0x2
Do I]);l.n1 n 0x2
1=1,n
prod=0.0 n_11 oxfl
DO k=1.n prod 1 [
prod = prod + ml(i,k) * n2(k.j) %
61 ENDDO)
62 nout(i,j) = alpha * prod + beta * mout(i,j)
ENDDO
 ENDDO
5 END SUBROUTINE]« i
ld | 2 | *| [pe: @register ZZ!
Input/Output | Breakpoints | Watchpoints | Tracepoints | Tracepoint Output Stacks | Kernel Progress View | Evaluate & X
Stacks & X | Expression lVaIue [
GPU Threadl Function |
16384 hmpp_codelet__sgemm__loop2D_1 (mysgemm_cuda.hme.cu:40)
hmpp_codelet__sgemm__loop2D_1 (mysgemm_cuda.hmc.cu:36)
hmpp_codelet _sgemm__loop2D_1 (sgemm.f90:60)
0 +test (sgemm.£90:110)
Ready 4

WWww.caps-entreprise.com

24

4 - Performance Measurements CAPS

« Parallelism is about performance!

 Track Amdahl’'s Law Issues

o Serial execution is a killer Profiling
. CPU analysis HMPP Wizard &
o Check scalability Debugger Feedback

o Use performance tools

HMPP Performance Analyzer
Performance analysis, fracing

o Ad d p e rfo rm a n Ce m e a S u re m e nt i n Target specific optimized libraries

the code
o Detect bottleneck a.s.a.p.
o Make it part of the validation process

December 2011 www.caps-entreprise.com 25

HMPP Wizard caprs

* Analyze the code to help migrate to * Provide tuning advices
many-core architectures within an o Check coalescing of memory
iIncremental process accesses

o Improve parallelism ...

Q Home 0‘) Execution Profile Eﬁ Source files 9 Advice £ Performance Analyzer QOptions m I

Welcome to HMPP Wizard » Advice Results

© Advice2

m

int 1, 3

14 for (:'L ='1; i< M-1; ++i) // 2 i ¥
1s { i1

16 for (3 =1; 3 <N -1; ++3) // 1 | Detected potential issue

17 {

i: int a = rename(a, A); =| sample/data/src/mycode.c @line 28 -

a , A[i-11(3-1] = a ; Advice2: the computation density is low.

21 } B

22 } Loop statistics

#pragms hmpp initLoop codelet, target=CUDA o Number of array accesses: 1

25 void initLoop(int M, int N, real A[N][M]) 2 .73 :
26 ¢ © Number of operations: 2 induding 0 1

T W I flops

28 for (i =1; i <M-1; ++i) // 2 il © Number of intrinsic operations: 0
29 { induding 0 flops

30 for (3 =1; 3 <N -1; ++j) // 1

31 .

= $ ALi-1105-1] = 3.14 ; For more details, connect to the

3 } MyDevDeck

34 }

as :

e Make your Code
37 gpragma hmpp leoopUnrolled codelet, target=CUDA

:: x{mid loopUnrolled(int M, int N, real A[N][M]) © The computation may fetch few

performance from the accelerator. To

40 int i, j; 3 ‘

41 gpragma hmppcg parallel get a performance gain, the data M a n - o re
42 gpragma hmppcg unroll 4, jam, split, order=2, noremainder should already be present on the

3% sfoxidi Sy AL, BRI 2 device or require few memory

44 {
transfers from the CPU.
December 2011 www.caps-entreprise.com 26

45 gpragma hmppcg parallel
46 gpragma hmppcg unrell 4, split, order=2, noremainder

1

HMPP Wizard

Welcome to HMPP Wizard » Advice Results

a8
89

Close this tab

© Advice54

double t_createl = ctkRealTimer();
pr2c = fftw_plan_dft_r2c_ld(n, idata_real,

FFTW_ESTIMATE) ;

920

FFTW_ESTIMATE) ;

91
92
93
94

pc2r = fftw_plan_dft_c2r_ 1d(n, odata_int*

double t_createZ = ctkRealTimer (

double t_exec_pr2cl kRealTimer () ;

flediate, odata_real CPU

odata_intermed

4
CAPLS

Detectefl potential issue

HMPP-AL]Y-FFT/VERSION1
/exec_D3Z_7Z2D.c @line 95 - Advice54: A
e standard FFTW function

95

fftw_execute (pr2c);

ute” has been detected inside

96
97
98
99
100
101
102
103
104

double t_exec pr2c2 = ctkRealTimer () ;

double t_filterl =
filter(n,
double t_filter2 =

ctkRealTimer () ;

ctkRealTimer () ;

double t_exec_pc2rl = ctkRealTimer () ;

(double _Complex *) odata_intermediate,

cf);

a functign.
Advice

Consider using an optimized library for
you application with the HMPP ALT
[proxy.

for (1 = 1; 1 < M-1; ++i) // 2

{
for (3 =1; § <N -1; ++3) // 1
{
int a = rename (3,
A[i-1][j-1] = a ;

) ;

December 2011

{
for (j = 1; j < N -1; ++3) // 1 \
{

A[i-1][j-1] = 3.14 ;

fpragma hmpp loopUnrolled codelet, target=CUDA

www.caps-entreprise.com

cJLAd|tools

Detected potential issue

sample/data/src/mycode.c @line 25 -
Advice2: The computation density is low.

Loop Statistics

o Number of array access: 1

o Number of operations: 2 including
0 flops

o Number of intrinsic operations: 0
including 0O flops

\Q more details, click ;M/

Advice :

o The computation may fetch few

27

HMPP Performance Analyzer

 Dynamic analyses

4
CAPLS

« Synthetize metrics based on GPU execution profile

[a Source files Q@ Advice

#) Execution Profile

Q Home

£ Performance Analyzer

‘n Options

Welcome to HMPP Wizard » Performance Analyzer

143 REAL(REALSIZE) pred,vla,via
144
145 I$OMP parallel DO
146 DO =1, p
147 DO i=1, m
148 DO k=1,n
149 wvout(i,j) = wvout(i,j) + vinl(i,k) * alpha
1s0 ENDDO
151 ENDDO
1s2 ENDDO
153 ISOMP END parallel DO
154
1ss !$OMP parallel DO
DO i=l, m
S8 prod=0
iS5 k=1
Een vla = vinl(i, k)
- vZa = vin2(k,3)
162 DO k=2,n
- pred = pred + vla * via
[] vlia = vinl(i, k)
- v2a = vin2(k,3)
| ENDDO
) pred = pred + vla * via
-] vout(i,j) = alpha * pred + beta * vout(i,j)
L] ENDDO
a7a ENDDO

o
]
-

I$OMP END parallel DO
172

"
<}
©

I$OMP parallel DO

DO i=1, m
DO k=1,n

December 2011

Codelet

"process_matrix"

Loop Nest 1
From line 146 to 152

(o]

o Grid: 3D Loop gridification
o GPU execution time: 21850.5us
o Kernel name:

www.caps-entreprise.com

>

m

\-

m

\

Tune your
Codelet
for Your

Hardware

28

5 - Dealing with Libraries caprs

e Library calls can usually only be partially replaced

o No one to one mapping between libraries (e.g.BLAS, FFTW, CuFFT,
CULA LibJacket)

o No access to all code (i.e. avoid side effects)
o Don'’t create dependencies on a specific target library as much as possible
o Still want a unique source code

» Deal with multiple address spaces / multi-GPUs
o Data location may not be unique (copies)
o Usual library calls assume shared memory
o Library efficiency depends on updated data location (long term effect)

« Libraries can be written in many different languages
o CUDA, OpenCL, HMPP, etc.

 There is not one binding choice depending on applications/users

o Binding needs to adapt to uses depending on how it interacts with the remainder
of the code

o Choices depend on development methodology

December 2011 www.caps-entreprise.com 29

V|
CAPLS

Library Interoperability in HMPP 3.0

C/CUDA/...

HMPP Native GPU GPU Lib
Runtime API Runtime API e

call libRoutinel

(...) gpulib(...)

#pragma hmppalt = proxy?2 CPU Lib

call libRoutine2(...) ()
cpulibl (...)

call libRoutine3(...)

cpuLib3(...)

30

December 2011 www.caps-entreprise.com

Conclusion CAPS

« Software has to expose massive parallelism
o The key to success is the algorithm!

o The implementation has “just” to keep parallelism flexible and easy to
exploit

* Directive-based approaches are currently one of the most
promising track
o Preserve code assets

o May separate parallelism exposure from the implementation (at node
level)

« Remember that even if youd@arevery careful in your-choices
you may have to rewrite’parts'of thescode
o Code architecture is the main asset here

December 2011 www.caps-entreprise.com 31

V|
: CAPS
Many-core programming GPGPU OpenHMPP

Directive-based programming Code Porling Methodology
OpenACC Hybrid Many-core Programmin
Parallel compuling HPC open standard
High Perfformance Computing Multi-core programming

Massively parallel

HMPP Competence Center
Hardware accelerators programming V'

DevDeck 0‘0
Parallel programming int

Global Solutions for
Many-Core Programming

http://www.caps-entreprise.com

