
How to Write Code that Will Survive the
Many-Core Revolution
Write Once, Deploy Many(-Cores)

Guillaume	
 BARAT,	
 EMEA	
 Sales	
 Manager	

2 December 2011

CAPS worldwide ecosystem
Customers

Business Partners

•  Involved in many European Research projects

•  OpenMP ARB Accelerator program subcommittee

•  OpenStandard Initiative

•  HMPP Competences Centers in Europe and Asia
www.caps-entreprise.com

www.caps-entreprise.com 3 December 2011

Foreword

•  “How to write code that will survive the
many-core revolution?” is being setup as a collective
initiative of HMPP Competence Centers
o  Gather competences from universities across the world (Asia,

Europe, USA) and R&D projects: H4H, Autotune, TeraFlux
o  Visit http://competencecenter.hmpp.org for more information

Trend from Top500: Cores per Socket

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

2002	
 2003	
 2004	
 2005	
 2006	
 2007	
 2008	
 2009	
 2010	
 2011	

Sy
st
em

s	

16	

12	

10	

9	

8	

6	

4	

2	

1	

December 2011

4

Trend from Top500: Accelerators

0	

5	

10	

15	

20	

25	

30	

35	

40	

2006	
 2007	
 2008	
 2009	
 2010	
 2011	

Sy
st
em

s	

Clearspeed	
 CSX60022	

ATI	
 GPU	

IBM	
 PowerXCell	
 8i	

NVIDIA	
 2070	

NVIDIA	
 2050	

NVIDIA	
 2090	

December 2011

5

•  Many HPC codes aren’t seeing a speed up with new
hardware systems (due to many-core, lower bandwidth,
lower memory/core, etc.)
o  Many applications will need a major redesign
o  Multi-core will cause many issues to “hit-the-wall”
o  So GPUs can offer a speed-up

•  BUT
o  GPU still need to be more easy to program
o  Future portability is a key concern

www.caps-entreprise.com 6 December 2011

IDC @SC11: Study Results

www.caps-entreprise.com 7 December 2011

SC11: Consensus about directives ?

•  OpenACC initiative (2011)
o  CAPS, Cray, NVIDIA, PGI
o  A first common syntax for accelerator regions
o  Visit http://www.openacc-standard.com for more information

•  OpenHMPP initiative (2010)
o  Directive Open Standard for many-core programming
o  Complient with OpenACC syntax
o  Topics not covered by OpenACC: data-flow extension, tracing

interface, auto-tuning APIs…
o  Visit http://www.openhmpp.org for more information

www.caps-entreprise.com 8 December 2011

Where Are We Going?

Many-Core Programming Environment

Break the Many-Core Wall

© 2011 CAPS entreprise. All rights reserved - All product and company names herein may be trademarks of their registered owners.

How to Write Code
to Survive the Many-Core Revolution?

Pushed by the pace of innovation in the many-core technologies,
including graphic processing units (GPUs), the processor
landscape is moving fast.

As a consequence of the processor frequency stagnation, in 2013-
2014, the number of parallel cores in general-purpose
processors will be comparable to the number of cores
contained in NVIDIA™ GPUs in 2007.

By being a high level model, directive-based approaches like
HMPP™ abstract the programming of many-core applications, keep
them hardware independent and ensure their portability across
new generations of hardware.

HMPP, a Directive!based Multi-language and Multi-target Programming Model

Based on a set of OpenMP™-like directives that preserve legacy codes, HMPP fully leverages the performance offered
by most of today’s stream processors. You keep your software independent from hardware targets while preparing for
future architectures (Sandy Bridge, MIC, AMD Fusion, NVIDIA Denver!).

Complementary to OpenMP and MPI™, HMPP lets you incrementally develop or port existing applications to many-
core without the complexity associated with many-core programming.

Pioneer in the directive-based approach with its HMPP flagship product, CAPS also delivers software development
tools, solutions and expertise that help organizations to adapt the way their applications are developed in order to benefit
from the performance of many-core architectures.

What You Get with HMPP

 With one source code, target multiple many-core architectures
 Distribute computation over CPU and GPU cores (Multi-GPU)
 High performance with optimized data management
 Interoperability with libraries
 Protect your software investment by using an Open Standard

From C/C++/FORTRAN,

Using your Compiler

to

BE PART
of a Worldwide

Ecosystem

Strong Non Uniform Memory
Access (NUMA) effects

o  Not all memories may be
coherent

o  Multiple address spaces

www.caps-entreprise.com 9 December 2011

What to Expect From the Architecture?

Data/stream/vector
parallelism to be

exploited by GPUs
E.g. CUDA / OpenCL

Data transfer between
CPU and GPUs, multiple

address spaces

Node is not an homogeneous
piece of hardware

•  Not	
 only	
 one	
 device	

•  Balance	
 between	
 small	
 and	
 fat	

cores	
 changes	
 over	
 Rme	

Many parallelism forms are needed to
deal with

•  Increasing	
 number	
 of	
 processing	
 units	
 	

•  Some	
 form	
 of	
 vector	
 compuRng	
 (AVX	
 or	

SSE	
 instrucRons)	

	

•  Computing power comes from parallelism
o  Hardware (frequency increase) to software (parallel codes) shift
o  Driven by energy consumption

•  Heterogeneity is the source of efficiency
•  Few large fast OO cores combined with many smaller cores (e.g. APUs)

•  Fast moving hardware targets environment
o  e.g. fast GPU improvements (RT and HW), new massively parallel CPU
o  Write codes that will last many architecture generations

•  Keeping a unique version of the codes, preferably mono-
language, is a necessity
o  Reduce maintenance cost
o  Directive-based approaches suitable
o  Preserve code assets

What to consider by writing your code

December 2011 10 www.caps-entreprise.com

•  ALF - Amdahl’s Law is Forever
o  A high percentage of the execution time has to be parallel
o  Many algorithms/methods/techniques will have to be reviewed to

scale

•  Data locality is expected to be the main issue

o  Moving data will always suffer latency

www.caps-entreprise.com 11 December 2011

Software Main Driving Forces

•  Benefit
o  No need to change existing code

•  Issues
o  Extra latency compared to shared memory use

•  MPI implies some copying required by its semantics (even if efficient MPI
implementations tend to reduce them)

o  Excessive memory utilization
•  Partitioning for separate address spaces requires replication of parts of the data.
•  When using domain decomposition, the sub-grid size may be so small that most points

are replicated (i.e. ghost zone)
•  Memory replication implies more stress on the memory bandwidth which finally produces

a weak scaling

o  Cache trashing between MPI processes

o  Heterogeneity management
•  How are MPI processes linked to accelerator resources?
•  How to deal with different core speed?
•  The balance may be hard to find between the optimal MPI process that makes good use

of the CPU core and the use of the accelerators that may be more efficiently used with a
different ratio

www.caps-entreprise.com 12 December 2011

One MPI Process per Core Approach

•  Benefits
o  Some codes are already ported to OpenMP/threads APIs
o  Known APIs

•  Issues
o  Data locality and affinity management

•  Data locality and load balancing (main target of thread APIs) are in general
two antagonistic objectives

•  Usual thread APIs make it difficult / not direct to express data locality affinity

o  Reaching a tradeoff between vector parallelism (e.g. using the AVX
instruction set), thread parallelism and MPI parallelism

•  Vector parallelism is expected to impact more and more on the performance
•  Current threads APIs have not been designed to simplify the implementation

of such tradeoff

o  Threads granularity has to be tuned depending on core characteristics
(e.g. SMT, heterogeneity)

•  Thread code writing style does not make it easy to tune

www.caps-entreprise.com 13 December 2011

Thread Based Parallelism Approach

www.caps-entreprise.com 14 December 2011

An Approach for Portable Many-Core Codes

1	

•  Try	
 to	
 expose	
 node	
 massive	
 data	
 parallelism	
 in	
 a	
 target	
 independent	
 way	

2	

•  Do	
 not	
 hide	
 parallelism	
 by	
 awkward	
 coding	

3	

•  Keep	
 code	
 debug-­‐able	

4	

•  Track	
 performance	
 issues	

5	

•  Exploit	
 libraries	

6	

• When	
 allowed,	
 do	
 not	
 target	
 100%	
 of	
 possible	
 performance,	
 the	
 last	
 20%	

are	
 usually	
 very	
 intrusive	
 in	
 the	
 code	

•  Rely on code generation for implementation details
o  Usually not easy to go from a low level API to another low level one
o  Tuning has to be possible from the high level
o  But avoid relying on compiler advanced techniques for parallelism

discovery, …
o  You may have to change the algorithm!

•  An example with HMPP

www.caps-entreprise.com 15 December 2011

1 - Express Parallelism, not Implementation

#pragma hmppcg gridify(j,i) !
#pragma hmppcg unroll(4), jam(2)!
 for(j = 0 ; j < p ; j++) {!
 for(i = 0 ; i < m ; i++) {!
 for (k = ...) { ...}!
 vout[j][i] = alpha * ...;!
 }!
 }!

Directive based approach for
many-core

Cuda & OpenCL devices
and soon Intel MIC

•  Features

o  With one source code,
target multiple many-core
architectures

o  Distribute computation over CPU
& GPU cores (Multi-GPU)

o  High many-core performance
with optimized data
management

o  Libraries interoperability with
user code

o  Protect your software investment
by using an Open Standard

www.caps-entreprise.com 16 December 2011

HMPP Hybrid Compiler

Rapidly	
 develop	
 Many-­‐core	

Accelerated	
 applica4ons	

Rich set of directives for performance

•  Manycore programming directives in legacy code
o  Declare and generate GPU versions of computations (codelets)
o  Optimize data movement
o  Distribute computations over CPU cores & GPUs

•  Tuning of GPU kernels
o  Advanced code optimizations
o  Control mapping of computations
o  Fully exploit GPU stream architecture

En average, HMPP reaches Cuda performance +/- 10%

18 October 2011

Performance does matter

2	
 x	
 Intel(R)	
 Xeon(R)	
 X5560	
 	
 @	
 2.80GHz	
 (8	
 cores)	
 -­‐	
 MKL	

NVidia	
 Tesla	
 C2050,	
 ECC	
 acRvated	
 –	
 HMPP,	
 CUBLAS,	
 MAGMA	

www.caps-entreprise.com 19 December 2011

Guillaume	
 Colin	
 de	
 Verdière,	
 Onera	
 XtremCFD	
 Workshop,	
 7th	
 of	
 October,	
 2011	

•  Do not hide parallelism by awkward coding
o  Data structure aliasing, …
o  Deep routine calling sequences
o  Separate concerns (functionality coding versus performance coding)

•  Data parallelism when possible
o  Simple form of parallelism, easy to manage
o  Favor data locality
o  But sometimes too static

•  Kernels level
o  Expose massive parallelism
o  Ensure that data affinity can be controlled
o  Make sure it is easy to tune the ratio vector / thread parallelism

www.caps-entreprise.com 20 December 2011

2 – Do not hide parallelism

•  Data locality
o  Makes it easy to move from one address space to another one
o  Makes it easy to keep coherent

•  Do not waste memory
o  Memory per core ratio not improving

•  Choose simple data structures
o  Enable vector/SIMD computing
o  Use library friendly data structures
o  May come in multiple forms, e.g. sparse matrix representation

•  For instance consider “data collections” to deal with multiple
address spaces or multiple devices or parts of a device
o  Gives a level a adaptation for dealing with heterogeneity
o  Load distribution over the different devices is simple to express

www.caps-entreprise.com 21 December 2011

Data Structure Management

HMPP 3.0 Map Operation on Data Collection

www.caps-entreprise.com 22 December 2011

CPU	
 0	
 GPU	
 0	
 CPU	
 1	
 GPU	
 1	
 GPU	
 2	

#pragma hmpp <mgrp> parallel
for(k=0;k<n;k++) {
 #pragma hmpp <mgrp> f1 callsite
 myparallelfunc(d[k],n);
 }

Main	
 memory	
 Device	

memory	

Device	

memory	

Device	

memory	

d0	
 d1	
 d2	
 d3	
 d1	
 d2	
 d3	

•  Avoid assuming you won’t have to debug!

•  Keep serial semantic
o  For instance, implies keeping serial libraries in the application code
o  Directives based programming makes this easy

•  Ensure validation is possible even with rounding errors
o  Reductions, …
o  Aggressive compiler optimizations

•  Use defensive coding practices
o  Events logging, parameterize parallelism, add synchronization points,
…

o  Use debuggers (e.g. Allinea DDT)

www.caps-entreprise.com 23 December 2011

3 - Debugging Issues

•  Debug your kernels:
o  Debug CPU and GPU concurrently

•  Examine thread data
o  Display variables

•  Integrated with HMPP
o  Allows HMPP directives

breakpoints
o  Step into HMPP codelets

www.caps-entreprise.com 24 December 2011

Allinea DDT – Debugging Tool for CPU/GPU

•  Parallelism is about performance!

•  Track Amdahl’s Law Issues

o  Serial execution is a killer
o  Check scalability
o  Use performance tools

•  Add performance measurement in
the code
o  Detect bottleneck a.s.a.p.
o  Make it part of the validation process

www.caps-entreprise.com 25 December 2011

4 - Performance Measurements

•  Analyze the code to help migrate to
many-core architectures within an
incremental process

•  Provide tuning advices
o  Check coalescing of memory

accesses
o  Improve parallelism …

www.caps-entreprise.com 26 December 2011

HMPP Wizard

Make	
 your	
 Code	

Many-­‐Core	

Friendly	

www.caps-entreprise.com 27 December 2011

HMPP Wizard

Access to MyDevDeck web
online resources

GPU library usage detection

•  Dynamic analyses
•  Synthetize metrics based on GPU execution profile

www.caps-entreprise.com 28 December 2011

HMPP Performance Analyzer

Tune	
 your	

Codelet	

for	
 Your	

Hardware	

•  Library calls can usually only be partially replaced
o  No one to one mapping between libraries (e.g.BLAS, FFTW, CuFFT,

CULA,LibJacket)
o  No access to all code (i.e. avoid side effects)
o  Don’t create dependencies on a specific target library as much as possible
o  Still want a unique source code

•  Deal with multiple address spaces / multi-GPUs
o  Data location may not be unique (copies)
o  Usual library calls assume shared memory
o  Library efficiency depends on updated data location (long term effect)

•  Libraries can be written in many different languages
o  CUDA, OpenCL, HMPP, etc.

•  There is not one binding choice depending on applications/users
o  Binding needs to adapt to uses depending on how it interacts with the remainder

of the code
o  Choices depend on development methodology

www.caps-entreprise.com 29 December 2011

5 - Dealing with Libraries

Library Interoperability in HMPP 3.0

www.caps-entreprise.com 30 December 2011

...!

...!

...!

...!
 proxy2
(…)!
...!
...!

!
...!
...!
...!
...!
...!
...!
 gpuLib(…)!
...!
...!

!
...!
cpuLib1(…)!
...!
...!
...!
...!
cpuLib3(…)!
...!
...!

GPU	
 Lib	

CPU	
 Lib	

HMPP	
 	

RunRme	
 API	

NaRve	
 GPU	

RunRme	
 API	

C/CUDA/…	

...!
 call libRoutine1
(…)!
...!
...!
#pragma hmppalt!
call libRoutine2(…)!
...!
...!
...!
...!
call libRoutine3(…)!
...!

•  Software has to expose massive parallelism
o  The key to success is the algorithm!
o  The implementation has “just” to keep parallelism flexible and easy to

exploit

•  Directive-based approaches are currently one of the most
promising track
o  Preserve code assets
o  May separate parallelism exposure from the implementation (at node

level)

•  Remember that even if you are very careful in your choices
you may have to rewrite parts of the code
o  Code architecture is the main asset here

www.caps-entreprise.com 31 December 2011

Conclusion

Many-core programming Parallelization GPGPU NVIDIA Cuda OpenHMPP

D i r e c t i v e - b a s e d p r o g r a m m i n g Code Porting Methodology
OpenACC H y b r i d M a n y - c o r e P r o g r a m m i n HPC community Petaflops

Parallel computing HPC open standard Exaflops Open CL
 High Performance Computing Code speedup Multi-core programming

 M a s s i v e l y p a r a l l e l

 HMPP Competence Center

 Global Solutions for
Many-Core Programming

http://www.caps-entreprise.com

Hardware accelerators programming
GPGPU DevDeck
Parallel programming interface 	

	

