Déploiement simplifié de stations sans disque avec FaDDeF

Mohammed Khabzaoui

UMR 8524 Université Lille1

13 fevrier 2014

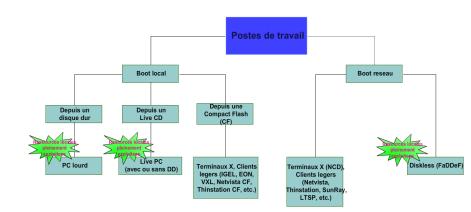
Qu'est-ce qu'un poste "diskless"?

Un poste "diskless" peut se résumer à un poste qui (source Wikipedia) :

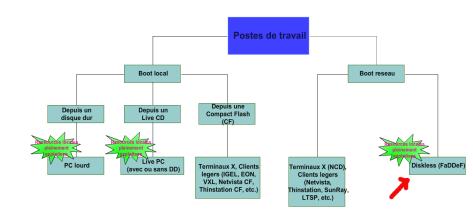
- Démarre sur le réseau
- N'a pas besoin d'un disque dur mais qui peut en avoir
- Exploite pleinement, peu, ou pas du tout les ressources locales

Qu'est-ce qu'un poste "diskless"?

Un poste "diskless" peut se résumer à un poste qui (source Wikipedia) :


- Démarre sur le réseau
- N'a pas besoin d'un disque dur mais qui peut en avoir
- Exploite pleinement, peu, ou pas du tout les ressources locales

Qu'est-ce qu'un poste "diskless"?


Un poste "diskless" peut se résumer à un poste qui (source Wikipedia) :

- Démarre sur le réseau
- N'a pas besoin d'un disque dur mais qui peut en avoir
- Exploite pleinement, peu, ou pas du tout les ressources locales

Positionnement du poste "diskless" par rapport aux autres types de postes de travail

Positionnement du poste "diskless" par rapport aux autres types de postes de travail

Dans notre cas, un système "diskless" fonctionne de la manière suivante :

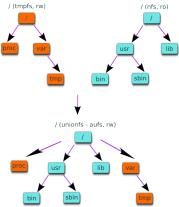
- Chargement du noyau et d'un ramdisk initial via le réseau (PXE)
- Montage de l'arborescence racine en lecture seule (readonly root) via un protocole réseau (NFS)
- Initialisation de l'environnement "diskless"

Dans notre cas, un système "diskless" fonctionne de la manière suivante :

- Chargement du noyau et d'un ramdisk initial via le réseau (PXE)
- Montage de l'arborescence racine en lecture seule (readonly root) via un protocole réseau (NFS)
- Initialisation de l'environnement "diskless"

Dans notre cas, un système "diskless" fonctionne de la manière suivante :

- Chargement du noyau et d'un ramdisk initial via le réseau (PXE)
- Montage de l'arborescence racine en lecture seule (readonly root) via un protocole réseau (NFS)
- Initialisation de l'environnement "diskless"


Dans notre cas, un système "diskless" fonctionne de la manière suivante :

- Chargement du noyau et d'un ramdisk initial via le réseau (PXE)
- Montage de l'arborescence racine en lecture seule (readonly root) via un protocole réseau (NFS)
- Initialisation de l'environnement "diskless"

Union de systèmes de fichiers

Une union de systèmes de fichiers est une "superposition" d'un ensemble de systèmes de fichiers appelés **branches** de l'union :

lecture : première occurence dans une branche en parcourant de gauche à droite

création : dans la première branche accessible en lecture/écriture

modification : si l'entrée est dans une branche en lecture seule alors copie de celle-ci dans la première branche accessible en lecture/écriture puis modification

suppression : si l'entrée est dans une branche en lecture seule alors création d'une entrée spéciale dans la première branche accessible en lecture/écriture matérialisant la suppression

FaDDeF repose sur :

- Un module noyau unionfs ou aufs
- Un script mkreadonlyroot.diskless qui met en place
 l'arborescence racine à exporter en lecture seule
- Un script mkinitrd.diskless qui crée un ramdisk adapté pour le fonctionnement en diskless

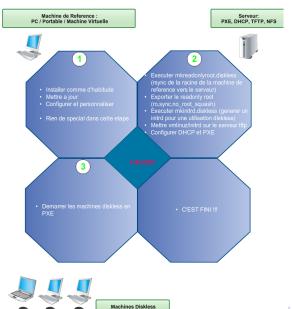
FaDDeF repose sur :

- Un module noyau unionfs ou aufs
- Un script mkreadonlyroot.diskless qui met en place
 l'arborescence racine à exporter en lecture seule
- Un script mkinitrd.diskless qui crée un ramdisk adapté pour le fonctionnement en diskless

FaDDeF repose sur :

- Un module noyau unionfs ou aufs
- Un script mkreadonlyroot.diskless qui met en place
 l'arborescence racine à exporter en lecture seule
- Un script mkinitrd.diskless qui crée un ramdisk adapté pour le fonctionnement en diskless

FaDDeF repose sur :


- Un module noyau unionfs ou aufs
- Un script mkreadonlyroot.diskless qui met en place
 l'arborescence racine à exporter en lecture seule
- Un script mkinitrd.diskless qui crée un ramdisk adapté pour le fonctionnement en diskless

FaDDeF repose sur:

- Un module noyau unionfs ou aufs
- Un script mkreadonlyroot.diskless qui met en place
 l'arborescence racine à exporter en lecture seule
- Un script mkinitrd.diskless qui crée un ramdisk adapté pour le fonctionnement en diskless

Mise en œuvre de FaDDeF

Pré-requis

- Un réseau local (LAN) ou correctement segmenté (confinement du DHCP et regroupement des postes concernés dans un VLan)
- Un réseau commuté au moins à 100Mb/s
- Un serveur DHCP
- Un serveur dédié NFS/PXE
- Un serveur de fichiers pour les comptes utilisateurs (de préférence NFSv4)
- Des PCs standards (bien détectés par la distribution GNU/Linux) avec suffisamment de RAM (au moins 2 Go)

Configuration DHCP

Ajoutez la configuration de votre serveur DHCP (pour utiliser le protocole PXE) :

```
next-server IPserveurPXE;
filename "/tftpboot/pxelinux.0"
```

Configuration des hôtes avec IP fixée

```
host diskless1 {
  hardware ethernet 00:0f:75:af:eb:44;
  fixed-address 192.168.1.100;
  filename "/tftpboot/pxelinux.0"
  # definit le serveur qui servira le fichier pxelinux.0
  next-server 192.168.1.1;
}
```

Configuration NFS/PXE

export NFS read-only de /diskless/madistribution

```
/diskless/madistribution *(ro,sync,no_root_squash)
```

Installez le package correspondant à syslinux et tftp-server et créez le fichier /tftpboot/pxelinux.cfg/default :

```
default diskless
label diskless
KERNEL vmlinuz-xxx.diskless
APPEND initrd=initrd-xxx.img.diskless NFSROOT=IP_NFS
:/diskless/ma_distribution
```

Configuration de la machine de référence

- Installez une distribution récente sur un PC de référence, configurez là pour permettre une utilisation normale (authentification, montage des comptes utilisateurs, etc.)
- Installez ou veillez à bien avoir le module unionfs ou aufs dans les modules disponibles (apt-get install aufs-tools), ou compilez-le.
- Veillez à ce que le PC ne loggue que vers un serveur syslog et plus en local
- Installez rsync et le service SSH
- Générez un biclé SSH (clé privée sur le serveur NFS/PXE et clé publique pour le root sur la machine de référence)

Déploiement de FaDDeF

Sur le serveur NFS:

- Récupérez FaDDeF: http://projets.mathrice.org/faddef/dist/faddef-last.tar.gz
- Puis ·

```
tar xfz faddef-last.tar.gz
cd faddef
cd build-root
./mkreadonlyroot machine_reference:/ /diskless/madistribution dist
cd ../initrd
./updateDiskless.diskless -a /diskless/madistribution 3.2.XX-XXXX /tftpboot
```

- -a : choisir selon la disponibilité de unionfs ou aufs dans votre distribution de référence
- 3.8.XX-XXXX : la version du noyau dans votre distribution de référence
- dist : correspond à la distribution de votre machine de référence dans build-root/add-ons
- Adaptez selon vos besoins /diskless/madistribution/etc/faddef/faddef.sh

Cadre d'utilisation de FaDDeF

FaDDeF peut être utilisé dans diverses situations :

- Pour des postes de travail dans un laboratoire
- Dans des salles d'enseignement / TP / formation
- Dans des salles en libre accès
- Dans une salle machine pour les besoins d'une conférence / congrès
- Pour faire du calcul
- Pour faire du dépannage

FaDDeF en action

FaDDeF est en production depuis 2006 :

- A l'Institut de mathématiques de Bordeaux (laboratoire, bibliothèque): 2 serveurs Xeon, 200 postes, 1 Gb/s et 100 Mb/s, Mandriva
- Au Laboratoire de mathématiques Paul Painlevé de Lille (laboratoire, bibliothèque): NetApp, 200 postes, 1 Gb/s et 100 Mb/s, Fedora
- A l'UFR de mathématiques, Université Lille1 (salles de cours + salles de TP Calculs scientifiques) : plus de 60 postes, 100 Mb/s, Fedora
- A l'UFR de Mathématiques, Université de Tours (salles de cours): 100 postes, 1 Gb/s et 100 Mb/s, Fedora
- A l'Institut d'Etudes Politiques de Lyon (salle en libre accès du service documentation) : 20 postes, Ubuntu
- Au CREMI Université Bordeaux 1 (salles de cours) : 2 serveurs, plus de 100 postes
- Au Laboratoire de Mathématiques, Nice : 200 postes, Mint

Conclusion

Avantages pour l'utilisateur

- Fonctionnement identique au poste lourd avec un peu moins de bruit
- Pleine exploitation des ressources matérielles locales
- Meilleure prise en charge des périphériques locaux que les clients légers (son, graveur, etc.)
- Meilleure prise en charge logicielle que les clients légers (3D, OpenGL, fontes, etc.)

Avantages pour l'administrateur

- Gestion centralisée
- Pas besoin de serveurs de terminaux (XDMCP par exemple)
- Déploiement simplifié
- Portabilité, sécurité
- Coût de possession optimal

Inconvénients

- Requiert suffisamment de RAM (2 Go minimum)
- Dépendance vis à vis du réseau, nécessité d'un serveur NFS connecté en Gb/s (Min =100 Mb/s)
- Limité aux distributions GNU/Linux (pas de Windows, BSD, Solaris)