
MicroPython: REPLs everywhere

Damien P. George

DAMTP & The Cavendish,
University of Cambridge

Inria (Lille), 2nd September 2015

Part I: Shrinking Python down to run on a microcontroller

Motivation for MicroPython

Electronics circuits now pack an enor-
mous amount of functionality in a tiny
package.

Need a way to control all these sophisti-
cated devices.

Scripting languages enable rapid development.

Is it possible to put Python on a microcontroller?

Why is it hard?

I Very little memory (RAM, ROM)
on a microcontroller.

D.P. George MicroPython 3/61

Why Python?

I High-level language with powerful features (classes, list
comprehension, generators, exceptions, . . .).

I Large existing community.

I Very easy to learn, powerful for advanced users: shallow but long
learning curve.

I Ideal for microcontrollers: native bitwise operations, procedural
code, distinction between int and float, robust exceptions.

I Lots of opportunities for optimisation (this may sound surprising,
but Python is compiled).

D.P. George MicroPython 4/61

Why can’t we use CPython? (or PyPy?)

I Integer operations:

Integer object (max 30 bits): 4 words (16 bytes)

Preallocates 257+5=262 ints −→ 4k RAM!

Could ROM them, but that’s still 4k ROM.

And each integer outside the preallocated ones would be another 16
bytes.

I Method calls:

led.on(): creates a bound-method object, 5 words (20 bytes)

led.intensity(1000) −→ 36 bytes RAM!

I For loops: require heap to allocate a range iterator.

D.P. George MicroPython 5/61

It’s all about the RAM

If you ask me ‘why is it done that way?’,
I will most likely answer: ‘to minimise RAM usage’.

I Interned strings, most already in ROM.

I Small integers stuffed in a pointer.

I Optimised method calls (thanks PyPy!).

I Range object is optimised (if possible).

I Python stack frames live on the C stack.

I ROM absolutely everything that can be ROMed!

I Garbage collection only (no reference counts).

I Exceptions implemented with custom setjmp/longjmp.

D.P. George MicroPython 6/61

PC demo

Internals

I Lexical analyser: simple tokeniser that interns all identifiers and
(most) strings.

I Parser: grammar represented in table form, evaluated by a single,
non-recursive function.

I Compiler: passes over the parse tree 3-4 times.

I Code emitter: emits bytecode, or machine code.

I Virtual machine: interprets bytecode.

I Runtime: many helper functions, implementing functionality for the
objects.

A given port (eg Linux, bare metal) provides specific RAM and I/O
hooks, a REPL, and custom modules.

D.P. George MicroPython 8/61

Internals

external bindings

user defined builtins using C
or other native language at

compile t ime

import

builtin modules are added to scope
user modules are compiled and executed

parse
tree

tokens

eval/exec/compile stringREPL prompt user scripts

runt ime

support code for executing Python code

builtin types (int, float, str, tuple, list, dict, ...)
builtin exceptions (TypeError, IndexError, ValueError, ...)

builtin functions (max, min, range, sort, sum, ...)
builtin modules (sys, os, array, math, ...)

- load/store global variables
- execute functions/methods by dispatching

- glue code, etc

virtual machine

executes bytecode

viper code

machine code

typed version of Python
can be executed directly

native code

machine code

proper Python semantics
can be executed directly

bytecode

source info
line info
bytecode data

executed by VM

compiler

turn parse tree
into code

lexer

turn script into a
stream of tokens

parser

turn tokens into
a parse tree

calls

calls

can load

calls

calls

calls

executed by

produces

produces

can produce

produces

produces

produces

D.P. George MicroPython 9/61

Object representation

A MicroPython object is a machine word, and has 3 different forms.

Integers:

I xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxx1

I Transparent transition to arbitrary precision integers.

Strings:

I xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx10

I Certain strings are not interned.

Objects:

I xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx00

I A pointer to a structure.

I First element is a pointer to a type object.

I ROMable (type, tuple, dictionary, function, module, . . .).

Note: still room for packing truncated floats.

D.P. George MicroPython 10/61

Emitters: bytecode

@micropython.bytecode

def add(x, y):

return x + y

Compiles to:

00: b0 LOAD_FAST_0

01: b1 LOAD_FAST_1

02: db BINARY_OP_ADD

03: 5b RETURN_VALUE

D.P. George MicroPython 11/61

Emitters: native

@micropython.native 00: e92d41fe push {r1, r2, r3, r4, r5, r6, r7, r8, lr}

def add(x, y): 04: e24dd028 sub sp, sp, #40 ; 0x28

return x + y 08: e59f7000 ldr r7, [pc] ; 0x10

0c: ea000000 b 0x14

10: 080794e0 .word 0x080794e0

14: e1a04003 mov r4, r3

18: e1a03002 mov r3, r2

1c: e1a02001 mov r2, r1

20: e1a01000 mov r1, r0

24: e3a00074 mov r0, #116 ; 0x74

28: e58d0000 str r0, [sp]

2c: e3a00080 mov r0, #128 ; 0x80

30: e58d0004 str r0, [sp, #4]

34: e3a00004 mov r0, #4

38: e58d0014 str r0, [sp, #20]

3c: e28d0000 add r0, sp, #0

40: e92d0010 stmfd sp!, {r4}

44: e1a0e00f mov lr, pc

48: e597f0a0 ldr pc, [r7, #160] ; 0xa0

4c: e8bd0001 ldmfd sp!, {r0}

50: e59d4024 ldr r4, [sp, #36] ; 0x24

54: e59d5020 ldr r5, [sp, #32]

58: e1a02005 mov r2, r5

5c: e1a01004 mov r1, r4

60: e3a00005 mov r0, #5

64: e1a0e00f mov lr, pc

68: e597f034 ldr pc, [r7, #52] ; 0x34

6c: e28dd028 add sp, sp, #40 ; 0x28

70: e8bd81fe pop {r1, r2, r3, r4, r5, r6, r7, r8, pc}

D.P. George MicroPython 12/61

Emitters: viper

@micropython.viper

def add(x:int, y:int) -> int:

return x + y

Compiles to:

00: e92d41fe push {r1, r2, r3, r4, r5, r6, r7, r8, lr}

04: e59f7000 ldr r7, [pc] ; 0xc

08: ea000000 b 0x10

0c: 080794e0 .word 0x080794e0

10: e1a04000 mov r4, r0

14: e1a05001 mov r5, r1

18: e1a01004 mov r1, r4

1c: e0811005 add r1, r1, r5

20: e1a00001 mov r0, r1

24: e8bd81fe pop {r1, r2, r3, r4, r5, r6, r7, r8, pc}

D.P. George MicroPython 13/61

Emitters: inline assembler

@micropython.asm_thumb

def sum_bytes(r0, r1):

mov(r2, 0)

b(loop_entry)

label(loop1)

ldrb(r3, [r1, 0])

add(r2, r2, r3)

add(r1, r1, 1)

sub(r0, r0, 1)

label(loop_entry)

cmp(r0, 0)

bgt(loop1)

mov(r0, r2)

Call as normal: print(sum_bytes(4, b’abcd’))

D.P. George MicroPython 14/61

Encoding of source-bytecode map

Histogram showing frequency of having to skip n bytes and n lines.

Encoding optimised for this (very simple Huffman-like).

D.P. George MicroPython 15/61

Example heap usage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100 200 300 400 500 600

in
it

,
cr

e
a
te

 l
e
x
e
r

parse

fr
e
e
 l
e
x
e
r

compile
scope

co
m

p
ile

,
e
m

it

free parse tree

fr
e
e
 s

co
p
e
s

execute

b
y
te

s
u
se

d

malloc/realloc/free call number

total heap usage
interned string usage

D.P. George MicroPython 16/61

Code dashboard

http://micropython.org/resources/code-dashboard/

D.P. George MicroPython 17/61

Coding style

MicroPython does not follow traditional software engineering practices:

I optimise first;

I creative solutions and tricks;

I sacrifice clarity to get smaller code;

I sacrifice efficiency to get smaller code (esp. less-used features);

I use of goto not discouraged;

I optimise to minimise stack usage;

I make decisions based on analysis.

D.P. George MicroPython 18/61

GitHub and the open-source community

https://github.com/micropython

MicroPython is a public project on GitHub.

I A global coding conversation.

I Anyone can clone the code, make a fork, submit issues, make pull requests.

I MicroPython has over 2250 “stars”, and more than 410 forks.

I Contributions come from many people, with many different systems.

I Leads to: more robust code and build system, more features, more
supported hardware.

I Hard to balance inviting atmosphere with strict code control.

A big project needs many contributors, and open-source allows such projects to
exist.

D.P. George MicroPython 19/61

GitHub stars — all 10 million+ projects

1 twbs/bootstrap CSS 85,841

2 vhf/free-programming-books None 42,432

3 angular/angular.js JavaScript 42,102

4 mbostock/d3 JavaScript 41,149

5 nodejs/node-v0.x-archive JavaScript 38,004

6 jquery/jquery JavaScript 35,780

7 FortAwesome/Font-Awesome HTML 35,663

8 h5bp/html5-boilerplate JavaScript 30,974

9 meteor/meteor JavaScript 27,843

10 rails/rails Ruby 27,531

...

1766 apache/couchdb JavaScript 2,279

1767 lifesinger/lifesinger.github.com JavaScript 2,276

1768 googlesamples/android-topeka Java 2,274

1769 addyosmani/es6-tools None 2,274

1770 activerecord-hackery/ransack Ruby 2,274

1771 sciactive/pnotify CSS 2,273

1772 addyosmani/basket.js JavaScript 2,273

1773 PostgresApp/PostgresApp Objective-C 2,273

1774 micropython/micropython C 2,272 <<<<<

1775 seanpowell/Email-Boilerplate HTML 2,271

1776 lipka/piecon JavaScript 2,271

1777 alfajango/jquery-dynatable JavaScript 2,271

...

D.P. George MicroPython 20/61

GitHub stars — all C/C++ projects
1 torvalds/linux C 25,156

2 nwjs/nw.js C++ 24,175

3 atom/electron C++ 15,777

4 ariya/phantomjs C++ 15,084

5 antirez/redis C 14,701

6 facebook/hhvm C++ 12,497

7 textmate/textmate C++ 10,490

8 git/git C 10,082

...

98 jonas/tig C 2,361

99 swoole/swoole-src C 2,319

100 raspberrypi/linux C 2,310

101 SFML/SFML C++ 2,282

102 philipl/pifs C 2,281

103 micropython/micropython C 2,272 <<<<<

104 sqlitebrowser/sqlitebrowser C++ 2,269

105 rswier/c4 C 2,255

106 philsquared/Catch C++ 2,228

107 joyent/http-parser C 2,225

108 nanomsg/nanomsg C 2,220

109 ivansafrin/Polycode C++ 2,195

110 libuv/libuv C 2,192

111 mpv-player/mpv C 2,173

112 arut/nginx-rtmp-module C 2,158

113 numpy/numpy C 2,157

...
D.P. George MicroPython 21/61

Part II: The pyboard hardware

The pyboard

I STM32F405RG: 192k RAM, 1M ROM, 168MHz, Cortex M4F.

I USB micro connector for device (and host).

I Micro SD card.

I 3-axis accelerometer (MMA7660).

I Real-time clock, 4 LEDs, 2 switches.

I 30 GPIO: symmetric pin layout, plus extra pins.

I Internal file system. ”/flash” and ”/sd”.

D.P. George MicroPython 23/61

Pyboard usage

I Standard Python prompt (REPL) over USB serial device, or UART.

I Raw prompt: reads a Python script until EOF, executes it, then
sends back the result.

I A script running from the flash/SD. Serial connection becomes
stdin/stdout.

I Powered by USB or battery.

D.P. George MicroPython 24/61

pyboard demo

Manufacturing

Jaltek Systems, Luton UK — manufactured 7000+ boards.

D.P. George MicroPython 26/61

Testing and programming

D.P. George MicroPython 27/61

MicroPython Live — http://micropython.org/live/

D.P. George MicroPython 28/61

Other hardware

MicroPython runs on lots of other hardware:

I STM32F4xx discovery boards,

I Espruino Pico (STM32F401),

I CC3200 wi-fi SoC (WiPy),

I ESP8266 wi-fi SoC,

I 16-bit dsPIC33F,

I ...

D.P. George MicroPython 29/61

Part III: The Kickstarter campaign

Crowd funding

Pitch an idea, get the public to fund it, give them something in return.

Started by ArtistShare in 2003.
IndieGoGo in 2008, Kickstarter in 2009, plus many others.

I Musicians, photographers, writers, video games, hardware, . . .

I Science projects

I Roll your own

2012: US$2.7 billion, more than one million individual campaigns

2013: crowdfunding industry grew to over $5.1 billion

Kickstarter: collected so far over US$1 billion in funds

D.P. George MicroPython 31/61

The stages

Stage 1: the idea!

I Prototyping.

I Fear that someone will beat you.

I Rush to get it online.

I Making the campaign, including video.

Stage 2: the campaign.

Stage 3: fulfillment.

I Spend all the money, buy lots of stuff.

I Finalise your idea and mass produce it.

I Lots of delays.

I Work out how to post 1000s of parcels.

I Packing and shipping.

I Returns, complaints, support, etc.

D.P. George MicroPython 32/61

Stage 1: the idea

Idea for MicroPython

I System on a Chip: CPU, RAM, flash
memory, timers, USB, Ethernet.

I Sensors: touch, accelerometer,
gyroscope, compass, barometer.

I Outputs: LEDs, LCDs, DC motors,
servos.

Goal: Make it easy for people to program their electronics projects.

Idea: Shrink Python to run on a
microcontroller.

D.P. George MicroPython 34/61

Initial development

I 30th April 2013: start!

I 17th September: flashing LED with switch in bytecode Python.

I 21st October: REPL, filesystem, USB VCP and MSD on PYBv2.

1 weekend to make the video.

Kickstarter launched on 13
November 2013, ran for 30
days.

Officially finished 12 April 2015.

D.P. George MicroPython 35/61

Stage 2: the campaign

The Kickstarter journey

D.P. George MicroPython 37/61

The Kickstarter journey

D.P. George MicroPython 38/61

The Kickstarter journey

D.P. George MicroPython 39/61

The Kickstarter journey

D.P. George MicroPython 40/61

The Kickstarter journey

D.P. George MicroPython 41/61

Campaign timeline

D.P. George MicroPython 42/61

Campaign timeline

10 20 30

Day of campaign

0

100

200

N
u
m

b
e
r

o
f

n
e
w

 p
le

d
g
e
s

Pledges per day

10 20 30

Day of campaign

0

5000

10000

G
B

P

GBP per day

Total backers: 1,931 Total raised: £97,803

D.P. George MicroPython 43/61

Pledge levels

0 50 100 150

Pledge amount

0

200

400

600

800

N
u
m

b
e
r

o
f

p
le

d
g
e
s

Pledge categories

I No reward, just
donation.

I A single board, £20
and £24.

I Multiple boards at £50
and £90.

I Kits at £40, £60, £80
and £130.

I Special items at £150,
£300 and £1,000.

D.P. George MicroPython 44/61

A few weeks later . . .

D.P. George MicroPython 45/61

Internet coverage

D.P. George MicroPython 46/61

Stage 3: fulfillment

Hand made boards

D.P. George MicroPython 48/61

Boards, headers, servo motors, . . .

D.P. George MicroPython 49/61

Programming and packing

D.P. George MicroPython 50/61

Stamps!

D.P. George MicroPython 51/61

Packing and shipping

D.P. George MicroPython 52/61

Packing and shipping

D.P. George MicroPython 53/61

Other Kickstarter campaigns

D.P. George MicroPython 54/61

Other Kickstarter campaigns

D.P. George MicroPython 55/61

Lessons and tips

I Why do want to do a crowd funding campaign (fun, money, have an
idea, start a business)?

I Work quick to bring it to the public:
• might be beaten!
• learn earlier if it’s not a good idea
• spend too long and the idea gets stale

I Make a video that shows yourself, your idea and your excitement.

I Plan your rewards carefully and offer a range (people like options)
but don’t make them too complicated (for your own sake).

I Don’t over-promise; have a core single idea and deliver on that as
best you can.

I Be prepared to respond to a lot of emails!

D.P. George MicroPython 56/61

Part IV: The future

Post Kickstarter

We now have a private limited
company.

Continue to sell the pyboard
and accessories online.

D.P. George MicroPython 58/61

Code improvements

I Option for 64-bit NaN boxing model.

I Option for 30-bit floats packed into current pointer model.

I Allow pre-compiled bytecode to be loaded.

I 100% test coverage (at 94% right now).

I Define a consistent hardware API for all MCUs / boards.

New hardware

I Cheaper board.

I More powerful board (eg Ethernet, SDRAM).

I More add-on boards (all with a standard form factor).

I Any new, interesting MCU: make a board out of it!

D.P. George MicroPython 59/61

Future of MicroPython

Continue to improve documentation, write tutorials, support more
peripherals, build a community.

Not just for bare metal: works very well on standard systems and anyone
can build and run it easily on *nix/Windows/Mac.

Great potential for Internet of Things (IoT): much easier to develop a
small internet connected device using Python than C.

Embedding MicroPython in games and mobile apps.

Industrial use — use in space? Determinism is a key point.

D.P. George MicroPython 60/61

micropython.org

forum.micropython.org

github.com/micropython

D.P. George MicroPython 61/61

